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ABSTRACT

The paper discusses the value of information when a number of independent sources
provide information related to a common set of states of nature. The starting point is the
information economic model of information structures. The model is augmented to repre-
sent independence of informational sources by means of orthogonality of the information
structures.

A new mathematical operator, orthogonal product, is defined and its properties are
probed. It is shown that this operator maintains some mathematical properties such as closure,
association, unity efement, null element, and so forth. It is demonstrated how the orthogonal
product represents the notion of multisource information.

The paper proves that an orthogonal product is generally more informative than its
multipliers, namely, if cost is not considered a constraining factor, then there is a nonnegative
value to obtaining a second opinion. An appendix to the paper expands this result to a case
of partially dependent signals. The paper concludes with a numerical example and a discussion
of the model’s applicability for practical problems such as cost estimates,
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INTRODUCTION

The information economic approach to information evaluation is based on
an information structure (IS) model developed by Marschak [9], McGuire and
Radner [11], Demski [5], and others and later expanded in a number of articles
(e.g., [1], [2], and [3]). The model portrays an information system as a stochastic
(Markov) matrix of probabilities which transforms states of nature to signals. The
decision maker (DM) must select the optimal decision rule under given values of
a priori probabilities for states of nature, and given values of payoffs. The infor-
mation economic model proposes a partial rank ordering of information struc-
tures by using Blackwell’s Theorem [10].

The 1S model basically adheres to a case of one source of information generat-
ing signals in a stochastic manner. In reality, however, there are many cases where
the DM must consider a number of signals based on the same set of states of nature
but generated by ‘‘independent” information systems. The IS model does not deal
with such cases explicitly. Since the power of any model is in its correspondence
to a real decision problem [5], the traditional model needs modification.

In other words, the real state of nature is unknown to the decision maker who
must learn about it through signals. However, instead of reacting to a signal pro-
vided by a single system, the DM requests signals from a number of sources and
reacts only after examining the combined information. The last section of this paper
provides an elaborate numerical example of such a case. Here we illustrate pertain-
ing cases through a number of narrative examples.

A manufacturing business of hi-tech electronic products wishes 1o place an
offer in a bid for a new product. The CEQO requests a cost estimate for the new
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product. The estimate is prepared by two independent teams. One team takes a
“‘micro’’ approach: the product is decomposed into major components which are
further divided into items until the entire bill of materials (see [13, ch. 11]) is ex-
ploded; then the cost of each elementary component is assessed, and the total is
summed up in order to obtain an aggregate estimate. The second team takes a
““macro’’ approach (also known as parametric control): the team attemnpts to assess
overall traits of the new product, for example, weight, volume, and number of elec-
tronic cards (slots); based on these few parameters and, of course, on past experience
and historical data, the team calculates a rough estimate of the cost. The CEO
must consider two distinct signals provided by two independent sources before
deciding what he or she believes to be the “‘real’’ cost.

A similar example is common in the construction industry. The cost of building
a new house usually is estimated in two ways. One way is to try to list all the
necessary ‘‘ingredients’’ of the house and sum up their cost; the other way is to
calculate the “‘magic number,” normally the floor space, and multiply this number
by the cost per square foot. The result will yield a quite good approximation of
the cost of the building.

One last example is taken from a totally different area. When people face a
crucial decision regarding their own health (i.e., undergoing a major surgery), most
of them ask for a second opinion, A second opinion is indeed an additional signal
based on the same state of nature but provided by an independent source.

The problem of multisource information has been discussed in a number of
articles. Winkler [19], for instance, examined the problem of combining several
forecasts of a single variable. Morris {14] [15] treated the same problem in a two-
stage Bayesian process. However, the incorporation of the IS model (which is in
fact based on decision theory) into the problem of multisource information has
not yet been explicitly presented.

This paper applies the IS model to the case where a decision maker has to
consider a number of signals provided by “‘independent’” (this term will be defin-
ed later more rigorously) information structures. The paper addresses a number
of questions. The first one is how independence of ISs can be formulated. The
paper coins a new term, orthogonal information structures; a new mathematical
operator labeled orthogonal product is defined and its mathematical properties
are analyzed.

A second question deals with the vatue of the information provided by orthog-
onal ISs. It is proven that the combined information collected from orthogonal
systems generally is more informative than the information produced by each indi-
vidual system, that is, it is worthwhile to ask for a second opinion (subject, of course,
to cost considerations). The Appendix expands this result to a case of partially
dependent information structures.

The last part of the paper discusses the applicability of the orthogonal model.
This discussion is assisted by a numerical example.

ORTHOGONAL INFORMATION STRUCTURES

We first review briefly the traditional IS model [10} and then incorporate or-
thogonality into the model.

Let E be a finite set of events (states of nature), E={e|, ..., e,p}. Letpbea
vector of a priori probabilities associated with the events in E, P=Pn, ... Pap),
where Ip;=1, p;=0, i=1, ..., ng. (The superscript ¢ stands for a transpose operator.)



1988] Ahituv and Ronen 257

Let Z be a finite set of signals, Z={z}, ..., z,7}. An information structure
Q is defined as a Markovian (stochastic) matrix of conditional probabilities (dimen-
sion ngXnz) in which signals of the set Z will be displayed at the occurrence of
an event of E. Thus ¢;; of Q is the probability that for a given event e;, signal z;
will be displayed.

Let A be a finite set of actions that can be taken by the decision maker, A
=lay, ..., @,4). A cardinal payoff function U is defined from A XE to the real
numbers, R!, associating payoffs to pairs of actions and events, [:A X E—R!. The
function U can be depicted by an n 4 X ng matrix, denoted U, whose each element

a;; reflects the payoff gained when an action a; is taken and the event turns out
to be e;
7

The DM cannot observe the events but only the signals and chooses actions
accordingly. The DM’s strategy is delineated by an nz xn, Markov matrix I, whose
each element d;; determines the probability that the DM takes action a; on observ-
ing signal z;. Obviously, the DM wishes to optimize D to obtain the maximum ex-
pected payoff. This is performed by the following algorithm.

Let p’ be a square matrix containing the elements of p in its main diagonal
and zeros elsewhere:

pl 0 (XX} 0

0 - .
p': : L] -

. . O

0 seef) an

The expected payoff gained from Q, U, and a decision rule D is given by tr{QDUp’),
where ‘‘tr’’ represents the trace operator. Maximization of the above is obtained
by solving a linear programming problem for the elements of D constrained by
the properties of a Markovian matrix (see [3] for an elaborate discussion).

Given two ISs Q and R operating on the same set of events E, Q is defined to
be generally more informative than R if the maximal expected payoff yielded by
R is not larger than that yielded by Q for all payoff matrices U and all probability
vectors p. A partial rank ordering of 1Ss is provided by Blackwell’s Theorem [10]
stating that Q is generally more informative than R if and only if there exists a
Markov matrix M with appropriate dimensions such that QxM=R; M is called
the garbling matrix. (Hereafter we will use the terms ‘‘informativeness’’ and “‘more
informative’’ for the relationship “‘generally more informative’)

The example below is provided to illustrate the 1S model; it follows [1] and
[2] closely.

Consider a railroad intersection with a highway in which a two-color traffic
light is posted. The pertinent sets are

Events: E=[Train arrives (T), No train (N)}
Probabilities: pf=(.1, .9)
Signals: Z=[Red (R}, Green (G))

Actions: A =1Stop (8), Proceed (P}

The payoff matrix, U, is as follows:
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Event
Action T N
S 0 -10
P -1018 0

Let Q and R be two information structures (i.e., traffic lights) as follows:

Q R
Signal Signal
Event R G Event R G
T 1 0 T 1 ]
N 0 1 N 001 .999

According to Blackwell's Theorem, Q is generally more informative than R
since there exists a Markov matrix M such that QM =R (in fact, for this example
M= R). Therefore there is no need to calculate the expected payoff in order to com-
pare Q and R. If we do perform the calculation we indeed will find that the optimal

1 0

decision rule for both structures is D= and tr(QDUp")=0 while

01

tr(RDUp’ )=-.009. We now introduce the notion of orthogonality. Intuitively, two
(or more) ISs are considered to be orthogonal when they observe the same set of
states of nature but generate signals independently; in other words, the likelihood
of a signal being generated by a certain IS does not depend on the signal produced
by the other IS, but only on the conditional probabilities of the IS itself. This now
will be formulated more rigorously.
Let Q and R be two ISs operating on the set of events E and producing the
sets of signals Z=1z,, ..., 2,z) and W={wy, ..., wyy} respectively.
Definition I: Signals z; and wy are orthogonal if and only if Pr((z;/;)/ (wy/e;))
=Pr(z;/e))=q; and Pr({wy/e;)/(z;/¢;))=Pr(wy/e}=ri for all / (i.e., the
probability that z; is triggered by an occurrence of e; does not depend
on whether w; has been displayed or not, and vice versa).
Definition 2: Information structures Q and R are orthogonal when all their
signals are orthogonal one to the other.
It is obvious that the relationship of orthogonality is symmetric (by defini-
tion) and transitive. The next section shows how to compose an integrated IS out
of two orthogonal ones.

ORTHOGONAL PRODUCT

This section shows how to combine the information provided by distinct or-
thogonal ISs. This is done by defining a mathematical operator, orthogonal prod-
uct {or orthogonal multiplication), and inquiring into its traits.

Let @ and R be two ISs defined in the same way as in the previous section.

Definition 3: 8 is the orthogonal product of Q and R (denoted S=Q@R) if

S is a matrix of ng rows and n, xn; columns whose elements are as
follows: for every i, i=1, ..., ng
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$i =4qj Xry
S =qaqXrn

Sinw  =4a XTinw
Sinw+1 =42 XTi
-

The orthogonal product S maps a set of ng events into a set of ny X nz signals.
The following numerical example clarifies the notion of orthogonal product.
Example: Let Q and R be the following 2x2 orthogonal IS:

2 22 W) w
e .9 1 ey |.8 .2
=Q =R
€y 2 8 €y X .6
Let S=Q@R. Then S is computed as
zl&wl Z]&Wz z;&wl Zz&Wz
e 7 18 .08 02
=8
e; | .08 g2 32 A8

S observes the original set £ and produces four signals which indicate what can
be displayed to the DM: z; and wy, z; and w;, and so forth. It now is the task
of the DM to devise the optimal decision rule for each individual pair of signals.
But first let us discuss some mathematical properties of the orthogonal product.

Property I: S is a Markovian matrix (this is the property of closure, i.e., the
set of IS is closed under the operator of orthogonal multiplication; see [20]).

Proof: Qbviously, each element of S is nonnegative; it is sufficient to show
that the sum of all the elements in a row of S equals 1.

E.S'fm=E Eqijx'rik=r‘qiszrik=1)<l=l-
m j ok J k

Property 2: The orthogonal product is an associative operation, that is,

Q@R@L)=(Q@R)@L. This property is directly consequential to the definition
of the operator.

Property 3; The unity element of the orthogonal product is the vector 1=
since for any Q it yields 1@Q=0Q.

Ll 2 o

Note that the unity element may have an informational interpretation as well.
An IS of that kind does not provide any information; it always produces the same
signal. Thus, combining it with another IS should not supply any additional
knowledge. =

Optimizing the decision rule for an orthogonal product matrix is similar to
the process carried out for a “‘simple” 1S, namely solving an LP problem. This



260 Decision Sciences [vol. 19

is obvious since the product is indeed an IS. Let us continue with the previous ex-
ample to demonstrate the optimization process.
Suppose Q, R, and S are as follows:

8 2 505 4 4 1
Q= R= S=Q@R=
5 5 8 2 4 1 4 1

Suppose the a priori probabilities are p'=(.6, .4), the set of actions is A=1a,, a;),
and the payoff matrix U is the following:

Sl 52
al| 20 -15
=U.
ay -30 40
1 0
Given Q alone, the optimal decision rule is Dg*= and the expected payoff
0 1
0 1
would be Tp=11. For R, the optimal decision rule is Dg*= and
1 0

the expected payoff would be Tp =8.6. Given both ISs, the optimal decision rule
for Sis

a @&
ZI&Wl | 0
Z]&Wz 0 1
=DS*
Zz&wl 1 ]
ZZ&WZ 1 0

and the expected payoff is Tg=11.8.

Note that the marginal value of the information provided by the “‘second opin-
ion” (i.e., S) is .8 relative to Q, and 3.2 relative to R. However, before we elaborate
on the value of orthogonal information, let us discuss two more properties of the
orthogonal product.

Property 4: The “maximum-entropy”’ matrix is the *““null element”’ of the or-
thogonal product in terms of informativeness (i.e., contribution to the expected
payoff). A maximum-entropy matrix (see [16]) is a stochastic matrix whose elements
are all equal. For instance, suppose the matrix’s dimensions are ng X nz; then every

S .5

element 1; equals 1/nz for all i and j. For example, assume T= and

S5 5
S=Q@T, where Q is taken from the previous example. S is in fact a flattening of Q:

45 45 05 .05

g 1 4 4
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1 0
1 0

The optimal decision rule D= will yield the same expected payoff as attained
by Q. 01
01

Property 5: The matrices S=Q@R and 8, =R@Q are informatively equivalent.

Proaf: 1t is obvious that 8 and §; consist of the same columns arranged in
a different order. It is proven in [9] that permutations of IS columns do not affect
the informativeness of the IS.

Intuitively, the interpretation of Property 5 is clear. Knowing that the columns
of the orthogonal matrix have been permuted, the DM has only to permute the
rows of the decision matrix accordingly. This property implies that it really does
not matter which opinion is considered first and which is considered second as
long as two opinions are indeed asked for.

The next section will now inquire into the informativeness of the orthogonal
product vis-a-vis its multipliers.

INFORMATIVENESS OF THE ORTHOGONAL PRODUCT

Is it always better to acquire a second opinion? A positive answer to that ques-
tion is not quite intuitive. According to Blackwell’s Theorem, a garbled IS cannot
perform better than the original matrix. An orthogonal product is after ail an IS
produced from two original stochastic matrices, so perhaps it will not perform better
than its “‘parent’’ matrices. However, unlike a garbled IS, the orthogonal product
is not generated through common algebraic multiplication but rather by a different
operation. We will show now that an orthogona! product is more informative than
its multipliers.

Theorem I: Let Q and R be two ISs operating on a common set of events.
Let S be the orthogonal product of Q and R. Then 8 is generally more informative
than Q, and S is generallty more informative than R.

Proof: The proof will be handled in a constructive fashion, namely we will
build garbling matrices that transform § to Q or to R. This will constitute a suffi-
cient condition for applying Blackwell’s Theorem to prove the above assertion.

qui s G1nz AT vee Finw
Let Q=1 ¢ R=| +

dpE1 *** 4nEnz FpEl  *** TnEnW

qaurn e Guinw sor GinZlinw
S=Q@R-= |+

GnEVREY  *** GnE\REnW  ***  GnEnZTnEnw
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Let M; and M; be two Markov matrices each having nz Xny rows and nz
or iy columns, respectively, constructed as follows:

10+« =0 10 ¢« « =0
1 Q0 o o« = 0 01 0. » « 0
. Ist npy rows : 1st nyz rows
1 g » + = 0 0 « o » ﬂ 1
0 1 Os o o 0 l a = @ 0
01 0sas.0 01 0. s «0
Mi=| - 2nd nyrows  Ma=| ¢ 2nd nz rows
4] 1 0 LI '0 0 » = » 0 1
0 « o @ 0 } 1 0 s + 0
0 . . . 0 1 0 1 0' - '0
. last 1y rows . last nz rows.
0 - . » 0 ] 0 . s @ 0 1

It is easy to see that SxXM, =Q and SxM,=R. Hence, § is generally more infor-
mative than both Q and R.
Since sometimes two ISs can be equivalent in terms of their informativeness

9 1 9

8 8 2
the case here. The relationship “‘generally more informative’ is a one-way rela-
tionship between the orthogonal product and its multipliers (except for some “4ir-
regular’’ cases presented in the next section). In order to substantiate this proposi-
tion it is sufficient 0 provide a numerical example.

Examine the sample matrices Q and § of the previous section. It is easy to
see that the matrix Mj that solves the set of linear equations Q XM, =8 js not
Markovian, hence Q is not generally more informative than S.

We now will examine some immediate results of the above theorem.

(e.g., is equivalent to ), it is important to note that this is not

THE VALUE OF A SECOND OPINION

Some immediate conclusions can be derived from Theorem 1. First, it is clear
that the orthogonal product of n+1 orthogonal ISs is generally more informative
than the product of any n matrices out of them. This may imply that the acquisi-
tion of an additional orthogonal opinion is always worthwhile. However, one has
to consider the cost of obtaining the additional information vis--vis the marginal
expected payoff.

Suppose the cost is not a constraining factor. How far should one seek for
additional opinions? A clear stopping rule is when one manages to obtain a “‘com-
plete and perfect’” IS, that is, the unity matrix. Such a matrix provides the max-
imal expected payoff so there is no need for further inquiry. This can also be
displayed in terms of an orthogonal product: Let

9 1 10
Q= 1=
2 8 01
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9 0 .1 0
Their orthogonal product is 8y = . Suppose the optimal decision
0 2 0 .8
1 0
10 o 1
rule for I was . Obviously, a decision rule in the form of will yield
01 1 0
0 1

the same expected payoff.

-t has been noted in a previous section that the ““maximum-entropy’’ matrix
cannot improve the expected payoff. Nevertheless, the above theoremn makes it obvious
that this matrix does not worsen the level of informativeness when it orthogonally
multiplies a ““reguiar’’ IS. It maintains, in fact, the same level of informativeness;
this of course is mathematically possible since the rank ordering imposed by
Blackwell’s Theorem is not a strict relationship.

The maximum-entropy matrix also can be used to demonstrate the notion of
S5 5
«jttle improvement.” For instance, the matrix does not add to the
5 5
informativeness of any existing IS; however, if this matrix is slightly modified to
S+e S—¢g
look like where ¢, and ¢, are small numbers, its orthogonal
S-—¢ S+e
multiplication with any other IS represents a *‘little bit” of added knowledge. In
ordinary words, the maximum-entropy matrix represents a situation of maximum
uncertainty, and any deviation from it likely will constitute an improvement.
This concludes the discussion on the value of an orthogonal IS. In the Appen-
dix we present some properties of partially orthogonal structures. The next section
discusses an application of orthogonal systems for cost estimation.

APPLYING THE MODEL

The purpose of this concluding section is to raise some ideas on an applica-
tion of the orthogonality model. This will be done in the context of cost estima-
tion problems.

Cost estimate of large (and usually unique and nonrepetitive) projects is a severe
problem in areas such as construction, public utility companies, and ship building,
aircraft, software development, electronics, and high-tech industries. Deviations
might be three or four times farger than initial estimates (see [7] for examples of
hardware, software, power plants, and aircraft developments; [12] for examples of
subway construction and military systems developments). There ar¢ numMerous
reasons for the deviations. The prominent ones are unforeseen exogenous factors
(e.g., environmental, political, legal), mismanagement, deliberate deviation in order
to get a contract, and wrong estimation technigues.

We will show now how the concept of orthogonal IS can be applied to im-
prove the estimation process. This will be done using a numerical example.

Let E be a set of events representing the “‘real” cost of a project (ex post);
for example, E={$100,000; $200,000; $300,000}, where the figures indicate possi-
ble costs of a project. Note that the fineness of event classification is assumed to
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be subject to judgment and may be revised. Assume the events are arranged such
that the associated cost figures are sorted in an ascending order. Let pf=(1/3, 1/3,
1/3) be the a priori probabilities assigned to the events of E. The probabilities may
be subiective or based on past experience.

The decision problem is to estimate the cost. It is assumed that the DM would
like to tell what will be the real cost. Hence the decision rule is a matrix whose
rows correspond to signals provided by an information system (which will be dis-
cussed later); the columns correspond to estimates of the costs (events), and the
elements indicate the probability that the DM estimates a certain cost value under
a given signal. For example:

Estimate
$100K $200K $300K
signal 100,000 dy, dpy diz
signal 200,000 dy dy dy =D
signal 300,000 dy; di; ds3

The payoff matrix U displays a cardinal profit function which relates estimates
to occurrences of real events (ex post). It can be assumed that as the deviation in-
creases 5o does the penalty the company pays. Therefore, the elements {payoff values)
of the main diagonal of the matrix will be more in favor of the DM while ‘‘remote”’
elements will reduce the profit (or increase the loss) monotonically. The following
example delineates a matrix reflecting losses due to wrong estimates; note that
underestimates and overestimates do not necessarily incur similar losses:

0 -150,000 -180,000
U= | -20,000 0 -120,000
-70,000 -50,000 0

The objective of the DM is to determine the most appropriate decision rule,
namely to estimate the cost as accurately as possible when a certain signal emerges
from the IS. Note that the DM does not necessarily need to follow the signal; if
the DM does not trust the IS, he or she may place an estimate not concurring with
the signal emerging from the system (see [3] for a case like that).

In order to perform a reasonable estimate, the DM employs some teams that
ought to provide him or her with sufficient data. In the case of cost estimation,
a very common approach is to decompose the project into components to obtain
the bilt of material for the project. This method is labelled *‘bottom-up” or *‘work
breakdown structure’’ (WBS); it was formulated by the U.S. Army in MIL STD
881A [18] (also see [4]). Once the elementary components have been identified and
their cost has been determined, the figures are aggregated upward to obtain the
total cost, to which one must add labor and other direct costs as well.

This method is considered relatively accurate; however it consumes much time
and labor. Its accuracy deteriorates in R&D projects or in projects where human-
power is a major factor (e.g., software development).
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An alternative approach is called parametric costing [6]. This method is based
on identifying some crude parameters that constitute a significant statistical corre-
lation with the cost of a project in a certain industry. For instance, a well-known
method was developed by Large, Campbell, and Cates [8] for estimating the cost
of manufacturing a new aircraft. Their assessment for the cost of building 100 com-
bat airplanes of the same model is given by a simple formula:

C=42xWBxs™M

where C is the cost per 100 units, W is the aircraft weight, and S is its maximum
speed. Another example is an adaptive system named PRICE [17]. The system user
can calibrate it to fit the organization’s particular circumstances. PRICE can handle
estimates in a number of areas such as hardware, electronics, and software.

The problem with information systems for parametric costing is that they are
not costless. They provide “‘quick and dirty’* information—that is, faster but prob-
ably less accurate—at a certain additional cost. The DM can use them as decision
support systems either to obtain fast responses or to crosscheck the signal provided
by the regular IS. Still the question remains: How much should one pay for a
*‘second-opinion’ system?

The orthogonal IS model cannot advise us how much to pay, but it can tell
the worth of a second opinion by figuring out the marginal expected payoff
emanating from the orthogonal product of the two systems. The DM must judge
whether the cost is worthwhile. Let us turn now to the numerical example to
demonstrate this,

Suppose the ISs for the bottom-up and the parametric approaches are the
following matrices Q and R, respectively:

9 1 0 g 0201
Q=] .05 9 .05 R=|.1 .8 .1
0 1 9 d 2 .7
Based on the IS model, the optimal decision rule for both Q and R is the following
matrix:
010
D*=|0 1 0
0 01

The expected payoffs for Q and R are -8,000 and -22,000, respectively. In terms

of gross expected payoff Q is preferred; however one must consider the cost of carry-

ing out a bottom-up analysis and the time it might consume. Nevertheless, let us

see if taking Q or R as a second opinion yields some significant marginal payoff.
Let S be the orthogonal product, S=Q@R:

63 18 09 07 02 01 O 0 0
$=1.005 .04 .005 .09 .72 .09 .005 .04 .005
»

0 ¢ 0 002 .07 09 18 .63
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The optimal decision rule for § is

=]
17
*
i
Coo00O—O—

—— e D OO OO

OO OO O — D

The expected payoff is -6,066.66. The marginal gross payoff is 1,933.34 relative
to Q and 15,933.34 relative to R. These values should be compared to the cost and
time factors associated with obtaining the additiona! information. Note that it makes
intuitive sense that when R is available, the additional value of a second opinion
provided by Q is greater than the other way around, since initially R appears to
be less ““exact”’ than Q.

The last important question is how to calibrate the model for practical use.
Initially it should be based on past experience and judgment. However, once the
model! is programmed and instalied on a computer (including the LP routine to
solve the optimal decision rule), it can be used not only to assess the value of a
second opinion but also to analyze the sensitivity of the solution to various assump-
tions regarding the model’s components, that is, the ISs, the payoffs, and the a
priori probabilities. In fact the programmed model can serve as a decision support
system for obtaining a solution as well as for testing the initial assumptions. [Re-
ceived: June 17, 1986, Accepted: December 16, 1986.]
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APPENDIX
Partly Independent Information Structures

Although our main interest lies in independent opinions (i.c., orthogonal IS), it is impor-
tant to note that the orthogonal product operator can be applied to cases where the signals
are not fully independent; consequently, a theorem similar to Theorem 1 can be proven.
This is discussed briefly here.

Definition 4: Let Q and R be two ISs operating on the same set of events, £, and pro-
ducing the sets of signals Z and W, respectively. § is called the general product of Q and

R (denoted S=Q@R) if 8 is a matrix of ng rows and n y X nz columns whose elements are
as follows: for every i, i=1, ..., ng

S” = PT(Z‘ N W] /Ei)
Si = Pr(Z, N Wz/ﬂj)

Sow  =PrZ,NWyyte))
Siw+1 =Pr(ZN W) /ep)

The general product $ maps a set of nz events into a set of #y, X nz signals. However, unlike
the orthogonal product where the signals of the two different ISs were assumed to be inde-
pendent, here that assumption is not made. In the ““worst’’ case, the structures are fully
dependent and the product structure should not provide any additional valuable informa-
tion. In the ‘*best’ case the structures indeed are independent and the discussion presented
in the main body of the paper pertains. In any event the general product matrix cannot
be less informative than its ‘‘parent’” structures. This is given in the following theorem.

Theorem 2: Let Q and R be two 1Ss operating on a common set of events. Let S be
the general product of Q and R. Then § is generally more informative than Q, and S is
generally more informative than R.

The proof follows the same constructive fashion and the same arguments presented
in the proof of Theorem 1, so we shail not repeat it here.

In conclusion, the orthogonal product is, in fact, a special case of the general product.
We could have started by proving Theorem 2 and then Theorem ! would have become a
corollary, Nevertheless, since we believe the orthogonal case is more interesting than the
general one, we developed the paper the way we did.
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